Block Chain Based Proof-of-Work Hash

and Wild Keccak as a Reference Implementation

Boolberry Team
August 1, 2014

Introduction

The cornerstone of all Proof-of-Work (PoW) based cryptocurrencies is the hash function
used to confirm that work was done. It is used within the currency to enable a decentralized
group of mutually untrusting participants to agree on a consistent transaction history and protect
against double-spending. To do so, the currency requires participants to prove that they have
“‘wasted” a certain amount of computational power by presenting a proof to the PoW function.
For this work, the participants receive a reward in the form of generated coins. Ultimately, the
cost of coin generation becomes comparable to energy consumption, coupled with the
depreciation of the equipment.

However, in the real world many hash functions were easily optimized to work not only on
the classical CPU, but also the GPU, and later ASICs. This progression has led to certain
problems, such as an unequal distribution of generated coins as well as the centralization of
network hashrate, which in turn makes it possible for one entity to double-spend.

The problem

Currently, one of the main problems of Proof-of-Work projects is ASIC miners -- custom
chips designed and manufactured specifically to solve the PoW as fast and efficiently as
possible. Production of ASIC miners, which provide hash rates several orders of magnitude
higher than CPUs and GPUs, appear to give a small group of individuals the ability to perform
most of the work. This in turn casts doubt on the reliability and safety of the network as a
payment system. Moreover, the introduction of ASIC-based mining creates a sudden drop in
mining profitability for those with conventional equipment, which further exacerbates the problem
of centralization and can significantly affect pricing. Bitcoin’s hash function, SHA-256, was the
first to succumb to the problem.

Existing solutions

Many hash algorithms have been created or used in an attempt to mitigate this problem.
Litecoin is likely the most well-known Bitcoin fork created with the goal of resisting GPU and
ASIC development. It used SCrypt in its PoW algorithm in its attempt to achieve this. SCryptis a

sequential memory-hard function requiring asymptotically more memory (128KB) than the
original bitcoin algorithm [1]. Despite its memory-hardness, it soon became clear that SCrypt
was easier to implement in GPU than originally thought. ASIC implementations followed soon
thereafter, but despite its original goal, the Litecoin development team rejected performing a
“hard fork” to avoid the chaos that accompanies a mandatory upgrade by nearly all participants
in a large decentralized system [2].

Another solution to the problem is to combine different algorithms as done by Quark.

Quark used nine rounds of six different hash functions in an attempt to keep the GPU miners
away. The Quark solution worked for less than three months.

The X11 developer, Evan Duffield, also combined different algorithms but with a different
goal. Evan has written on several occasions that X11 was integrated into Darkcoin not with the
intention to prevent ASIC manufacturers from creating ASICs for X11 in the future, but rather to
provide a similar migratory path that Bitcoin had (CPUs, GPUs, ASICs). He expects that
eventually, as Darkcoin grows in market capitalization, and ASIC investments becomes
profitable, ASICs will be developed [3].

Several functions were designed to solve specific computational problems. For example,
the Primecoin algorithm requires miners to find prime numbers using the Cunningham chains
method. Verification of this algo is fast and memory-cheap while the actual calculations
appearing to be memory hard because to get effective work required a prepared data structure
(about 100kb). As it was pointed in [4], this algorithm has two weaknesses:

*"Time-memory tradeoff" - an ASIC has the option of removing much of the memory
required by sacrificing some computational efficiency; even with only 100 KB per thread a miner
can be fairly efficient.

""All clear effect" - as it turns out, it is possible for GPUs and ASICs to have multiple
threads share the same memory. Since Primecoin mining only requires the sieve to be filled
once, an ASIC can calculate a sieve first and then run thousands of threads through it.

The Birthday Attack algorithm looks for hash collisions. The ingenuity of the protocol
comes from the fact that while efficiently computing the birthday attack requires storing the
hashes in a data structure so that every new hash can be checked against all previous ones,
verifying the solution only requires checking two hashes. The algorithm is resistant against the
all-clear effect because memory must be flushed every 2°2 rounds. However, there are several
shortcuts and time-memory tradeoff attacks. First, one can optimize by storing only the first few
bytes of each hash instead of the entire hash. Second, one can only store hashes with the first
two bits being 00; this takes 75% of possible solutions out of consideration, reducing time
efficiency by 4x, but it also increases space efficiency by 4x. Finally, there is potential for
optimization by examining the various options between storing hashes in a large array, a binary
or red-black tree, and other more complex structures; the optimal algorithm may be quite
complicated.[4]

The Ethereum project was planning to use Dagger, a PoW algorithm that claimed to be
memory-hard to compute and memory-easy to verify. Dagger creates a directed acyclic graph
with a total of 2% - 1 nodes in sequence. If the miner finds a node between index 222 and 2 such
that this resulting hash is below 22°° divided by the difficulty parameter, the result is a valid proof
of work. The algorithm was analysed and found flawed: “Dagger seems to provide almost the
best possible scenario for parallelization. In Dagger, a certain amount of RAM is filled by
pseudo-random data derived from the header and the nonce. This data is produced in rounds.
Each round, a number of elements from the previous round outputs are hashed together. An

optimized implementation for an ASIC (or FPGA) is evident for anyone with some discrete logic
design background.” [6]. Finally etherium developers rejected to use Dagger as PoW algorithm.

Cuckoo Cycle is a graph-theoretic PoW system, based on finding cycles in large
random graphs [7]. Originally, it was expected the function would memory consume about
4GBof memory, but later David Andersen [8] made an optimization that reduced memory usage
to 512MB-300MB.

The potential problem of functions such as Primecoin, Dagger or Cuckoo Cycle is that it
assumes that for solving problem needed specific amount of memory, but there could be
discovered some optimizations or new approaches that may do these Proof-of-Work functions
with less memory.

Going back to classic hash functions, CryptoNight hash looks pretty strong. It uses a
similar concept as SCrypt but has a huge 2MB scratchpad (taking advantage of the CPU’s fast
cache memory) that is modified on each step. It uses the AES instruction set that is built in to
most modern CPUs. On the other hand, this hash function is extremely slow: hash operation
takes about 10-30ms. The speed makes some DoS attacks possible and causes slow block
chain synchronization, especially with laptops. The slow work time comes from big scratchpad.
On one hand it takes advantage of CPU’s cache memory, but on the other hand the algorithm
has to prepare and then process whole scratchpad data, therefore it actually takes longer time.

Idea

After review of existing Proof-of-Work functions, we determined we wanted to have a
function with the following properties:

1. Memory hard - undoubtedly this property is a key feature of being ASIC resistant.

2. Fast validation - it is very desirable to have a fast synchronization time to protect
nodes from possible DOS attacks.

Classic SCrypt-like hash functions create a scratchpad for every hash calculation. The
shortcoming to this is larger scratchpads take more time to prepare. 2MB is reasonable size
based on limitations forced by speed requirements. However, memory hardness is desired only
at mining; single hash calculation is not needed to be memory hard.

Boolberry took a different approach. The scratchpad is generated to provide an array of
pseudo-random data to work on, and the generation causes a lot of memory access operations.
But, the cryptocurrency already has pseudo-random data in the block chain; some hashes, keys
and so on. The idea is to use this block chain data as one solid incremental scratchpad
for hashing. A portion of each new block is added to this scratchpad.

Now it is possible to have a wide range of scratchpad sizes, since there are no
performance restriction due to scratchpad generation, as in the SCrypt-like functions. But, after
public discussion [9] it became clear that too large of a scratchpad would make it impossible to
have SPV-client in the future, especially for mobile platforms. On the other hand, if the
scratchpad is too small, it leaves room for a bigger advantage for GPU mining and possibility of

ASICs. Considering both of these circumstances we decided to restrict scratchpad growth to
about 90MB per year. For incremental scratchpad update we use following data:

* previous block id

* coin-base transaction’s one-time public key

* coin-base transaction’s merkle hash

* coin-base transaction’s output keys

Implementation

Now that there is a global scratchpad, a hash function is needed that's fast and
cryptographically strong. The hash function will use this scratchpad with many reads from
randomly-chosen addresses.

Keccak (SHA-3) was chosen as the base hash function, and made memory hard by
injecting random memory reads in between the internal permutation rounds. To illustrate the
difference, this is the original Keccak function[10]:

kecoak "."th\vﬂl“'.f
block header i_\- hash <
*marhla sonl v le_pousl l - ._l‘&
IE _£ 1_-114’\/\!--1

1-
2!
1-
4

Original Keccak Schema

Each function f does 24 rounds of permutations, so we decided to inject read operations
right between each round inside f:

BLOCKCHAIN-BASED SCRATCHPAD (soMB/year) =
) e “':‘*-.\ l'"-.xl| ~ AR

L

i

&
[#
|
Ilf/

: _,/ PoW hash

block header

+ merkle rook + b_count

| — s ! — — S

Wild Keccak Schema

Wild Keccak has modified permutations function - we modified operations in “Theta”
phase to use 64-bit multiplication instead of XOR, in order to give slight advantage to consumer
level CPU over GPU and ASIC miners:

for (i =0; 1 < 5; i++)
{

bc[i] = st[i] ~ st[i + 5] » st[i + 10] * st[i + 15] * st[i + 20];
}

It is debatable if this modification will keep all cryptographic properties of hash function,
but it should work fine as PoW function.

After each Keccak permutation round, its internal state array is filled with pseudo-random
data as a result of computing the hash function, modified by xoring with arbitrarily selected data
from global scratchpad.

Let:

S[] - global scratchpad represented as array of 32-byte blocks

B.a, B.b, B.c, B.d - 8 byte long parts of 32-byte long block

KS - keccak state, represented as array of 32-byte long blocks,
then modification function will be:

for(i = 0; i != 6; i++) /*for whole keccak state*/

KS[i] = KS[i] @ S[KS[i].a % S.size()] @ S[KS[i].b % S.size()] @
S[KS[i].c % S.size()] & S[KS[i].d % S.size()]

blockchain-based

scratchpad 32 oyee
ff’
f ——
|
|
/——]
|- e

round 23

state

©
®
200 bytes (T)

DD D D«
Y

/?é;:::
(-
G800k

Y
Eee60

Wild Keccak State Modification

With that approach, for usual block header hashing operation Wild Keccak takes about
1100 operations of reading 32-byte blocks from global scratchpad.

Note: Current version of Wild Keccak has missing round constant change as an
implementation error. The consequences of that error merits further analysis, but the error has
been deemed non-critical at this juncture due to multiple state array modifications between
rounds.

Results & Conclusion

To ensure that current implementation of the idea that block chain based Proof-of-Work
hash function is really memory hard, we conducted performance tests using different
scratchpad sizes, and for each size, 100000 hash calculations were measured. As there are
significant differences between CPU cache memory reads and DRAM memory reads, memory
hard function should slow down with increase of scratchpad size due to CPU cache memory
satiation. Here are results measured on Windows 7 x64 with Intel Core i5 for scratchpad sizes
from 0 till 90MB, which is about a year of currency life:

100000 hashes calc time (ms)

4500
4000
3500
3000
2500

2000
1500
1000

500

[a]

O o ok ot o9k oo Pl o o T o ook o8k ok oo S
o 00,\1006@(9 @,5&009‘300 0%*\“%@“ 0@%@2:500 HCERCE 0092@0 &

scratchpad size (bytes)

As seen, while scratchpad size is growing, hash calculation time is also growing
significantly which confirms that resulting hash function is actually memory hard and at the same
time single hash calculations are almost as fast as original keccak.

This diagram could be easily built by running performance_tests module and passing it’s
results into spreadsheet.

References:

[1] https://litecoin.info/scrypt

[2] https://litecointalk.org/index.php?topic=18166.0

[3] http://wiki.darkcoin.eu/wiki/X11

[4] https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-Dagger
[5] http://www.hashcash.org/papers/momentum.pdf

[6] http://bitslog.wordpress.com/2014/01/17/ethereum-dagger-pow-is-flawed/
[7] https://github.com/tromp/cuckoo/blob/master/cuckoo.pdf

[8] http://da-data.blogspot.de/search?g=cuckoo

[9] https://bitcointalk.org/index.php?topic=588421.0

[10] http://keccak.noekeon.org/Keccak-main-2.1.pdf

https://www.google.com/url?q=https%3A%2F%2Flitecoin.info%2FScrypt&sa=D&sntz=1&usg=AFQjCNHkFZJDqlCcGERPXjvBbZlw0_gBfQ
https://www.google.com/url?q=https%3A%2F%2Flitecointalk.org%2Findex.php%3Ftopic%3D18166.0&sa=D&sntz=1&usg=AFQjCNHMR3kvGQv7aeqbo3F7t5XXtm29uw
http://www.google.com/url?q=http%3A%2F%2Fwiki.darkcoin.eu%2Fwiki%2FX11&sa=D&sntz=1&usg=AFQjCNFektWrvuK2yxgYpYgz75prZCyGNQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fethereum%2Fwiki%2Fwiki%2F%255BEnglish%255D-Dagger&sa=D&sntz=1&usg=AFQjCNHX4nVmwmokL3LqJs88IGeEAL_ItA
http://www.google.com/url?q=http%3A%2F%2Fwww.hashcash.org%2Fpapers%2Fmomentum.pdf&sa=D&sntz=1&usg=AFQjCNHTlNgTgKGpm9Tzaib9j8ZL5NfGuw
http://www.google.com/url?q=http%3A%2F%2Fbitslog.wordpress.com%2F2014%2F01%2F17%2Fethereum-dagger-pow-is-flawed%2F&sa=D&sntz=1&usg=AFQjCNHdNPlLF323jAjkoZT880EVUHl7Lg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Ftromp%2Fcuckoo%2Fblob%2Fmaster%2Fcuckoo.pdf&sa=D&sntz=1&usg=AFQjCNGSmC754vTENm6RAxXsS2X1iGanTg
http://da-data.blogspot.de/search?q=cuckoo
https://www.google.com/url?q=https%3A%2F%2Fbitcointalk.org%2Findex.php%3Ftopic%3D588421.0&sa=D&sntz=1&usg=AFQjCNHKQHY6Z-e_2jmOXi_XqMstGahqOw
http://www.google.com/url?q=http%3A%2F%2Fkeccak.noekeon.org%2FKeccak-main-2.1.pdf&sa=D&sntz=1&usg=AFQjCNETZhh_zRHR2HFXuZhyj13QFgpBOA

